
Personalization and Evaluation of a Real-time Depth-based Full Body Tracker

Thomas Helten1 Andreas Baak1 Gaurav Bharaj2 Meinard Müller3 Hans-Peter Seidel1 Christian Theobalt1

1MPI Informatik 2Harvard University 3International Audio Laboratories Erlangen

Saarbrücken, Germany Cambridge, MA, USA Erlangen, Germany

{thelten,abaak,theobalt}@mpi-inf.mpg.de gaurav@seas.harvard.edu meinard.mueller@audiolabs-erlangen.de

Abstract

Reconstructing a three-dimensional representation of

human motion in real-time constitutes an important re-

search topic with applications in sports sciences, human-

computer-interaction, and the movie industry. In this paper,

we contribute with a robust algorithm for estimating a

personalized human body model from just two sequentially

captured depth images that is more accurate and runs

an order of magnitude faster than the current state-of-

the-art procedure. Then, we employ the estimated body

model to track the pose in real-time from a stream of

depth images using a tracking algorithm that combines

local pose optimization and a stabilizing database look-

up. Together, this enables accurate pose tracking that is

more accurate than previous approaches. As a further

contribution, we evaluate and compare our algorithm to

previous work on a comprehensive benchmark dataset

containing more than 15 minutes of challenging motions.

This dataset comprises calibrated marker-based motion

capture data, depth data, as well as ground truth tracking

results and is publicly available for research purposes.

I.. Introduction

Tracking 3D human motion data constitutes an impor-

tant strand of research with many applications to com-

puter animation, medicine or human-computer-interaction.

In recent years, the introduction of unexpensive depth

cameras like Time-of-Flight cameras [1] or the Microsoft

Kinect has boosted the research on monocular tracking

since they constitute comparably cheap to obtain so-called

2.5 dimensional depth maps. Tracking from such depth

input is especially appealing in home consumer scenarios,

where a user controls an application only by using his

own body as an input device and where complex hardware

setups are not feasible.

While depth data facilitates background subtraction

compared to pure image based approaches, tracking still

remains challenging because of the high dimensionality

of the pose space and noise in the depth data. Currently,

there exist two different strategies to harness depth data

for tracking human motions. Bottom-up approaches detect

body parts or joint-positions directly from the depth im-

ages. Such approaches often neglect the underlying skeletal

topology of the human which may lead to improbable

joint locations and jitter in the extracted motion. Top-down

approaches fit a parametric model to the depth data using

an optimization scheme. Here, the accuracy of the final

tracking result is dependent on the degree to which the

body model matches the true body shape of the person. In

practice, such models are often obtained in a preprocessing

step, e. g., using laser scanners which are not available in

home consumer scenarios.

Recently, first attempts have been made to obtain the

shape of a person by fitting a parametric model to a set

of depth images of a strictly defined calibration pose.

However, the runtime in the orders of one hour as well

as the requirement of a fixed calibration pose limit the

applicability in a practical scenario.

Contributions.: We contribute with algorithmic so-

lutions that improve the performance of a combined dis-

criminative and generative real-time tracker. Firstly, we

present a new shape estimation method that makes model

fitting an order of magnitude faster compared to previous

approaches [2] at no loss of quality. Secondly, we extend an

existing tracking algorithm by [3] to obtain a personalized

version that works with arbitrary body shapes. As another

contribution, we deployed an extensive dataset of 15 min-

utes of calibrated depth and marker-based motion capture

(mocap) data which was used to evaluate our proposed

tracker and which will be made publicly available to the

research community. We also contribute with suitable error

metrics to make different trackers comparable on our data

set.

The remainder of the paper is organized as follows.

After discussing related work, we present our novel shape

Figure 1. (From left to right): Actor standing in the front of a single Kinect camera. Color coded depth data (red is near, blue is far)
as obtained from the Kinect. Automatically estimated body shape of the actor. Two complex poses reliably tracked with our algorithm
(left: input depth, right: estimated pose).

estimation method in Sect. III. Then, in Sect. IV, we de-

scribe our personalized tracker and evaluate it with respect

to previous approaches. Finally, we conclude in Sect. V

with a discussion of future work.

II.. Related Work

Shape Estimation.: Parametric shape models, as for

example described in [4], [5], provide an easy way to

represent the complex shape of the human body with

only a small set of parameters. The estimation of their

parameters from various kinds of input data constitutes

a challenging problem. Several approaches, such as [6],

[7], solve this task by estimating shape parameters from

images of a person. In contrast, [2] show a first approach

to obtain such shape parameters from a small set of depth

images. However, the runtime of such approaches is still

very long and problematic for home consumer scenarios.

Our approach closes this gap and enables fast and accurate

fitting of a body model to depth data.

Real-time Pose Estimation.: Marker-less pose esti-

mation from multi-view video has been a long-standing

problem in computer vision, and nowadays mature so-

lutions exist, see [8] for an overview. Usually, these

approaches do not run in real-time and require studio en-

vironments with complex multi-camera setups. Real-time

skeletal pose estimation has come into reach by making

use of depth sensors like time-of-flight (ToF) cameras [1]

or the Microsoft Kinect. By using kinematic body models

with simple shape primitives, the pose of an actor can be

found by fitting the model to depth data or a combination

of depth and image features [9], [10]. Body part detectors

and a mapping to a kinematic skeleton are used in [11] to

track full-body poses at interactive frame rates. Recently,

data-driven methods to perform 3D human pose tracking

based on a single depth image stream have become an

important research topic [3], [12], [13], [14]. Another

approach was proposed by [15] where regression forests

were used to obtain model-to-depth data correspondences

which are used for single frame optimization of body

(a) (b) (c) (d)

Figure 2. Shape estimation. (a): Calibration poses. (b): Depth
input of poses. (c): Initial shape. (d): Estimated shape.

pose and rough estimation of the overall body size. We

improve over the work by Baak et al. enabling a combined

generative and discriminative tracker with a personalized

shape model.

III.. Personalized Body Shape Estimation

Many tracking procedures based on depth camera in-

put rely on the availability of an accurate model of the

actor’s 3D body shape, which is often obtained by manual

modeling or by direct measurement using specialized body

scanners [3]. Such a method for generating a shape model

is impractical for home applications, where the user has

to deal with the following conditions and requirements.

Firstly, in most cases there will not be any other sensor

available for the shape estimation than for the actual

tracking. Secondly, the whole shape estimation procedure

should run in a reasonable amount of time, which means

in the order of one minute rather than one hour. Thirdly,

the procedure should impose as little additional constraints

and efforts on the user as possible. In particular, manual

interventions by the user, e. g., to adjust parameters, should

be minimized. Finally, the body shape estimation should

be robust to possible inaccuracies such as imprecise poses

assumed by the user during the calibration stage.

A first approach that tries to meet these requirements

while estimating the body shape from depth camera input

is described in [2]. Based on example shapes obtained from

laser scans, the authors construct a model that parametrizes

pose and shape of the human body. This model is then fit

to four depth images, captured from four different views

that are 90 degrees apart. After capturing the depth images,

the shape estimation takes about one hour.

In this section, we introduce a novel procedure for

estimating the body shape from a single depth camera

using only two different calibration poses and within only

a minute of fitting time, see Fig. 2 for an overview. In

addition, even if the user only roughly matches the required

calibration poses, our shape estimation algorithm achieves

accurate results. We propose two innovations to achieve

high speed and high accuracy. Firstly, our optimization

scheme works purely in the 3D domain and does not revert

to 2D data representations as silhouettes or contours as

used in [2]. However, note that the richer 3D contour is

implicitly represented in the 3D-domain. Using 3D cues

instead of 2D cues typically results in fewer ambiguities

and occlusion problems such as an arm in front of the

observed body, which would be invisible in the observed

contour. Secondly, in our optimization scheme we use a

local cost function that is not only based on distances

of corresponding points, but also considers normal-based

distances between points and planes. As a result, the

optimization is less likely to get stuck in local minima

and the speed of convergence is increased significantly.

A.. Shape Model

Mathematically, our shape model is given as a mesh

consisting of vertices and triangular faces. Let P be the

number of vertices and, as explained below, let ϕ be a

vector of shape parameters. Henceforth, we assume that the

mesh is rigged with a kinematic skeleton which is driven

by a pose parameter vector χ using linear blend skinning.

Hence, the 3D coordinates of the mesh depend on both

ϕ and χ and can be represented as the stacked vector

Mϕ,χ ∈ R3·P . Furthermore, let Mϕ,χ(p) denote the 3D

coordinate of the pth vertex, p ∈ [1 : P] := {1, 2, . . . , P}.
Finally, from the triangulation one can derive a normal

vector Nϕ,χ(p) ∈ R3 for each vertex.

Our body model is a statistical model of human pose

and body shape similar to [16]. The statistical model is

a simplified SCAPE model [4], where we omit the terms

responsible for modeling muscle bulging in order to speed

up computations. Our model is generated from scans of

127 young male and female persons [5]. This certainly

limits the expressiveness of the model to a certain extent.

However, as our experiments will show, even with a model

generated from a relatively small number of scans we

achieve better accuracy than [2] where 2 500 scans were

used. By suitably averaging the available scans, a base

shape consisting of P = 6449 vertices was generated.

Fig. 2 (c) shows the base shape in the standard pose given

by the parameter χ0. Let M0,χ0
be the vertex coordinates

of the base shape in the standard pose. Furthermore, let

ϕ be a shape parameter vector that linearly influences the

size and shape of the mesh. More precisely, from a shape

database, a suitable eigenvector matrix Φ ∈ R3·P×|ϕ| is

determined, encoding the statistical shape variations. The

details to compute the eigenvector matrix can be found in

the supplemental material. This yields a family of different

body shapes in the following way:

Mϕ,χ0
= M0,χ0

+Φ ·ϕ (1)

In [5] it was shown that by using dimensionality reduction

techniques, one obtains already a wide range of naturally

looking shapes of different people for a low-dimensional

ϕ. In our experiments, we use the 13 most significant

Eigenvectors.

As for the underlying skeleton, we use a model contain-

ing 51 joints similar to [17]. Not all joints possess a full

degree of freedom (DoF). For example, the spine is rep-

resented by several coupled joints that are parameterized

by only 3 DoFs, which results in a smooth bending of the

whole spine. In our experiments, we represent the pose of

a person with 31 DoFs (3 translational and 28 rotational)

encoded by the pose parameter vector χ. The skeleton

was once manually fitted to the base shape corresponding

to the parameter vector ϕ = 0 in the pose χ0. To be

able to transfer the skeleton to other shapes, we represent

the position of each joint as a linear combination of its

surrounding vertices.

B.. Optimization

Our shape estimation problem can be formalized as

follows. First, we assume a target point cloud is given

T consisting of points T (q) ∈ R3 for q ∈ [1 : Q], where
Q denotes the number of points. In our setting we assume

that T is a depth image as supplied by a Kinect camera, but

point clouds from other sources could also be used. The

goal is to jointly optimize the shape and pose parameters

of our shape model to best explain the given target point

cloud.

Firstly, the shape and pose parameter vectors are ini-

tialized by ϕ = ϕinit and χ = χinit. In our scenarios,

we set ϕinit = 0 and χinit to the standard pose parameter

χ0 translated to the mean center of the point cloud T . In

order to make the shape model compatible with the target

point cloud T , we transform the shape model surface into

a mesh point cloud. To this end, we basically consider the

3D coordinates M(p) := Mϕ,χ(p), [1 : P], of the mesh

vertices. Since in our setting the target point cloud T comes

from a depth image and hence only shows one side of the

actor, we also restrict the mesh point cloud to the points

that are visible from the depth camera’s perspective (the

rough orientation of the body is assumed to be known in

the calibration phase). To simplify notation, we still index

the restricted point cloud by the set [1 : P].

We establish correspondences between the target point

cloud and the mesh point cloud based on closest points.

For each point M(p), we define the corresponding point

T (qp) to be the point that minimizes the Euclidean distance

between M(p) and the point cloud T . Similarly, for each

point T (q) the point M(pq) is defined.
Based on these correspondences, we now introduce our

optimization scheme. It is well known from the literature

that one obtains faster convergence rates in rigid shape reg-

istration based on iterative closest points (ICP) when using

point-plane constraints instead of point-point constraints,

see [18] and references therein. Furthermore, such con-

straints are more robust to noise from depth sensors leading

to a more stable convergence. On the other hand, point-to-

plane constraints are problematic when correspondences

are far apart. Therefore, we design an energy functional

that incorporates both point-point as well as point-plane

constraints. First, for a pair (p, q) ∈ [1 : P]× [1 : Q] let

dpoint(p, q) = ||M(p)− T (q)||2 (2)

denote the Euclidean distance between the points M(p)
and T (q). Next, we use the normal information supplied

by the mesh to define a point-plane constraint. Let N(p) =
Nϕ,χ(p), p ∈ [1 : P], be the normal vector at the pth

vertex. Then, the distance between the point T (q) and the

plane defined by the normal N(p) that is anchored at the

point M(p) is given by

dnormal(p, q) = 〈M(p)− T (q), N(p)〉. (3)

Next, we fix a suitable threshold τ (in our experiments

τ = 15mm) to decide which of the distances should be

considered depending on how far the two corresponding

points are apart and we define

dτ (p, q) :=

{

dpoint(p, q), if ‖M(p)− T (q)‖2 > τ,

dnormal(p, q), otherwise.
(4)

Finally, in the definition of the energy functional

E(ϕ,χ|T) we consider all correspondences from the mesh

point cloud to the target point cloud and vice versa:

E(ϕ,χ|T) :=
∑

p∈[1:P]

dτ (p, qp) +
∑

q∈[1:Q]

dτ (pq, q). (5)

To minimize Eq. (5), we use a conditioned gradient

descent solver as described in [17]. To this end, we

compute the analytic partial derivatives of E(ϕ,χ|T) with
respect to the shape parameters ϕ and the pose parameters

χ and solve until convergence. Note that in contrast to

numeric differentiation, analytic derivatives enable faster

and more stable convergence. The analytic derivatives can

be found in the supplemental material of this paper. We

repeat the process in an ICP fashion, where between

two iterations, the correspondences are updated using the

newly estimated parameters ϕ and χ. We further speed

up the overall optimization procedure by using a multi-

scale approach, where we start with only a small number

of correspondences and successively increase the number

of correspondences until we use one correspondence for

every point in T and for every vertex in M .

Finally, we want to note that our optimization procedure

can be easily extended to consider several target point

clouds to be jointly optimized against. More precisely,

having K target point clouds T1, . . . , TK , the objective

is to estimate K pose parameter vectors χ1, . . . ,χK ,

but one joint shape parameter vector ϕ. In the opti-

mization, the energy functional is defined as the sum
∑

k∈[1:K] E(ϕ,χk|Tk), see Eq. (5). Our experiments show

that using only K = 2 different depth images (one from

the front of the body and one from the back) are already

sufficient to obtain an accurate shape estimate, see Fig. 2.

C.. Evaluation

To evaluate the accuracy of our proposed method and

to compare it with previous results, we conducted similar

experiments as reported in [2]. As for the test data, we

considered the body shapes of six different persons of

different size and gender (three males, three females),

see also Fig. 3. For each person, we recorded two depth

images, one showing the front and the other the back of

the body, see Fig. 2. Furthermore, using a full-body laser

scanner, we generated for each person a surface point cloud

with a resolution of about 350 000 vertices. These scans

serve as ground-truth (GT).

Now, let ϕ∗ be the optimized shape parameter vector

obtained by our algorithm when using the two depth

images as target point clouds (the pose parameter vectors

χ1 and χ2 are not used in the evaluation). Furthermore,

to obtain a ground-truth shape, we use the same algorithm

as before, however, this time using the laser scanner point

cloud as target. Let ϕGT denote the resulting optimized

shape parameter vector. To compare the shapes resulting

from ϕ
∗ and ϕ

GT, one needs to generate the correspond-

ing meshes. However, to this end, one also requires pose

parameters, and simply taking the standard pose parameter

vector χ0 is usually not the right choice, since the different

shape parameters may also have a substantial influence

on the assumed pose. Therefore, we compensate for this

effect by taking the standard pose for the laser scan

shape and by suitably adjusting the pose parameters for

the estimated shape. To this end, we again apply our

optimization algorithm using MϕGT,χ0
as target point

cloud and only optimize over the pose parameter vector

χ leaving ϕ = ϕ
∗ fixed. Let χ

∗ denote the result.

As for the final evaluation, we then compare the mesh

Mϕ∗,χ∗ (representing our shape estimation result) with

MϕGT,χ0
(representing the ground truth shape). Since

M1 M2 M3 F1 F2 F3 ∅

µ 5.1 18.7 9.1 6.8 11.4 9.2 10.1
σ 2.5 9.5 4.0 3.7 4.9 4.4 4.8
max 14.1 46.3 20.5 18.7 30.1 19.4 24.9

M1 M2 M3 F1 F2 F3

Figure 3. Vertex-to-vertex distances given in millimeters for three
male (M1–M3) and three female (F1–F3) subjects shown from
the front (middle) and from the back (bottom). The table (top)
shows the mean µ, standard deviation σ, and maximum max over
all vertices. The heads where removed from the error calculation
because of their bad representation in the shape model.

vertex correspondences of these two meshes are trivial

(based on the same index set [1 : P]), one can directly

compute the vertex-to-vertex Euclidean distances in the

same way as Weiss et al. [2].

The vertex-to-vertex distances are indicated in Fig. 3,

which also shows the mean, variance and maximum over

these distances. For example, for the first male actor M1,

the mean average is 5.1mm and the maximal distance

is 14.1mm. Overall, the achieved accuracies (in aver-

age 10.1mm) are good and comparable to (in average

10.17mm) reported in Weiss et al. [2]. There are various

reasons for inaccuracies. In particular, using only 13 of

the most significant Eigenvectors in Eq. (1) does not

allow us to capture all shape nuances which may lead to

higher errors, such as for the actors M2 and F2. In these

cases, either similar shapes might be not spanned by the

training data of the shape model or the 13-dimensional

approximation of shape variations might be too coarse.

Furthermore, note that the depth image resolution (which

is roughly 20mm at the used distance of 2.6m) as well

as the mesh resolution (where neighboring vertices often

have a distance of 20mm) puts limits on the achievable

accuracy. Nonetheless, overall good accuracy is achieved

with a compact model.

Besides its accuracy, our approach has two further main

benefits: efficiency and robustness. It only requires 50–
60 seconds to estimate the shape parameter vector (and

the two pose parameter vectors) from two target depth

point clouds. This is substantially faster than the 3 900
seconds (65 minutes) reported by Weiss et al. [2]. The

running times were measured using a C++ implementation

of our algorithm executed on an Intel Xeon CPU @

3.10GHz. Furthermore, jointly optimizing for shape and

pose introduces a high degree of robustness and allows us

to use only two different depth images to obtain accurate

shape estimates. Actually, an additional experiment, where

we used four target point clouds (using two additional

depth images) only slightly improved the overall accuracies

(from 10.1mm when using two poses to 8.4mm when

using four poses). Besides implementation issues, these

substantial improvements in running time and robustness

are the result of using a relatively small number of op-

timization parameters, reverting to reliable 3D correspon-

dences, using a more effective parametrization of the body

model, and combining point and plane constraints.

IV.. Personalized Depth Tracker

The tracker of Baak et al. [3] combines a generative

with a discriminative approach. The discriminative tracker

finds closest poses in a database, but that database is

specific to an actor of a certain body shape. To perform

best, that database would need to be regenerated for each

body shape, which they do not do. They merely use a crude

heuristic and scale the depth point cloud along fixed axes

to match the database model. Therefore, in this paper, we

suggest a different strategy by recomputing the entire set

of poses in the database using the estimated personalized

mesh. The database needs to be computed only once for

each actor, which takes around 12 minutes for 50 000 poses
using unoptimized code. An efficient GPU implementation

would yield further speedups.

The resulting personalized depth tracker captures even

fast and complex body poses (jumping jack, sitting down)

reliably and in real-time, see Fig. 1 and also the accompa-

nying video for some qualitative results. In the following,

we will give some quantitative results with comparison to

other approaches.

A.. Evaluation on the Standford Dataset

In a first experiment, we compare our personalized

tracker to previous approaches based on the dataset and er-

ror metrics described in [12]. The results of this evaluation

are depicted in Fig. 4. One can see that our tracker gives

comparable results to the previous approaches presented by

Ganapathi et al. [12] and Baak et al. [3] and excedes the

results of the previous approaches in many cases. Please

note that for this evaluation marker positions of markers

attached to the actor’s body are predicted and compared

to ground truth marker positions obtained with an optical

marker based mocap system. We think that this way of

27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0

50

100

150

200

250

E
rr
o
r
[m

m
]

Figure 4. Average tracking error of sequences 0 to 27 of the dataset provided by [12]. The sequences were tracked using the tracker
proposed by Ganapathi et al. [12] (blue), Baak et al. (red), and our tracker (yellow).

(a) (b) (c) (d) (e)

Figure 5. (a): Modified calibration wand with a cardboard disc
around one marker. (b): Illuminated marker shown in an image
from the RGB-camera of the Kinect. (c): Cardboard disk is
clearly visible in the Kinect’s depth image. (d): Reconstructed
marker trajectories from Kinect (red) and optical mocap system
(black). (e): Estimation of the rotational offset between both
trajectories after centering at their mean.

evaluating the tracking accuracy is not well suited for the

specific requirements in home consumer scenarios. For

example, in some reconstruction scenarios one is only

interested in reconstructing the joint positions of the user,

as it is done for example in many Kinect applications.

On the other hand, when it comes to augmented reality

scenarios, such as virtual try-on applications, one is rather

interested in tightly approximating the depth image of the

user to get a well fitting overlay of simulated objects such

as cloths. In order to address these two evaluation aspects,

we recorded a dataset with ground truth tracking results.

B.. Our Evaluation Dataset

For our evaluation, we recorded a dataset [19] using

both a Microsoft Kinect as well as a Phasespace active

marker-based mocap system simultaneously. It comprises

various kinds of motion performed by five actors (three

male: M1, M2, and M3 and two female: F1 and F2).

The body models for each actor were estimated with the

method from Sect. III. We defined four groups of motions

of different difficulties D. They range from easy to track

motion sequences (D1), simple arm and leg motions (D2),

fast movements such a kicking and jumping (D3), to very

hard to track motions such as sitting down, walking in

circles, or rotating in place (D4). In total we recorded

a set of 40 sequences, 2 takes from every of the 4
difficulties performed by each of the 5 actors. We used

half of the recorded motions to build the pose database

of the tracker, the other half is used for evaluation and

is referred to as evaluation dataset. We use the notation

<actor><difficulty> to refer to a specific sequence from

the evaluation dataset, e. g. M2D4 refers to the sequence

of difficulty D4 performed by actor M2.

Calibration.: In order to make the tracking results

from the depth trackers comparable to the ground truth data

we need to calibrate the Kinect with respect to the marker-

based system. Since the location of the Kinect camera is

unknown a priori and the frame capturing of the Kinect

cannot be externally synchronized, such a calibration con-

sists of two parts, a temporal calibration and a spatial

calibration. While the spatial calibration only needs to be

done once, the temporal calibration must be done for every

captured sequence. We perform the temporal calibration

by calculating a space invariant but time varying feature

for two corresponding trajectories from both the marker-

based and the Kinect recording. The temporal offset is

then determined by identifying the lag that maximizes the

cross correlation of both features. In our case, it turned out

that the absolute velocities of the trajectories are a robust

feature for temporal calibration even under the presence of

tracking errors. A suitable trajectory could, for instance, be

the position of a joint or another well defined point over

a period of time.

For spatial calibration of both the Kinect and the

marker-based system, we use a calibration wand with a

single active LED (see Fig. 5 (a)). Here, the idea is to

determine the trajectory of the marker using both recording

devices, and to register the trajectories to each other.

While the marker-based system provides the marker’s

trajectory in a straight forward way, we need some addi-

tional processing to obtain the trajectory from the Kinect.

The Kinect records depth and video simultaneously, see

Fig. 5 (b)& (c), and both streams are calibrated relative

to each other. We can thus get the LED trajectory from

the Kinect by recording in a dark room, thresholding the

intensity image to identify the pixel position of the LED,

and extracting corresponding depth information from the

depth channel. Using the intrinsic parameters of the Kinect,

we calculate the 3D position of the marker from the 2D

position and depth value. Fig. 5 (d) shows a reconstructed

marker trajectory (red) from Kinect footage. Now, we

temporally align the trajectories with the method described

above. The resulting trajectories are then aligned spatially

by determining a rigid transform for point correspondences

(Fig. 5 (e)).

Joint Tracking Error.: In a first experiment, we want

to evaluate how accurate the various depth-based trackers

capture the joint positions of an actor. To this end, we

used the marker data from the phase space system to

animate a kinematic skeleton using inverse kinematics. We

consider the resulting joints positions as ground truth data

for the evaluation. In the following we assume that the

sequences of the trackers and the ground-truth data have

been temporally and spatially aligned using the procedure

described above.

Since all trackers use a slightly different set of joints, we

select for each tracker a subset of 20 joints that are close to

semantic positions in the body such as the lower back, the

middle of the back, the upper back, the head, the shoulders,

the elbows, the wrists, the hands, the hips, the knees, the

ankles, and the feet. We now measure for every frame the

distance between the tracked joints and the ground truth

joints. Since the corresponding joints from the different

trackers do not lie at the exact same positions we need to

normalize for an offset. Therefore, we calculate the average

local displacement of the joint relative to the corresponding

ground-truth joint, and subtract this offset from the position

of the tracked joint. Here, local displacement means that

we consider the displacement within the local coordinate

frame of the ground truth joint.

The average errors—over all joints and frames of one

sequence—for the various actors and sequences are shown

in Fig. 6. One can see that the tracker of the Kinect SDK

performs worst with an average error of 95.8 millimeters

over all sequences. The tracker presented by Baak et

al. [3] shows an average error of 82.6 millimeters over all

sequences, while our tracker performs best with an error

of 73.8 millimeters.

Surface Tracking Error.: In a second experiment,

we assess the quality of the tracker by quantifying how

well the tracked mesh at each frame approximates the

point cloud recorded by the Kinect, referred to as surface

tracking error. To this end, we first calculate a so-called

distance map for every frame of a tracked sequence, by

determining for every foreground point in the depth image

of the Kinect the distance to the closest point on the mesh.

Now, the straightforward way to compute a suitable surface

tracking error would be to take the maximum distance

from each distance map. Unfortunately, it turns out that the

maximum is very unstable due to noise in the depth image

and inaccuracies of the background subtraction. Here, a

quantile value is better suited since it filters out influences

of noise. We tested several quantiles and it turned out that

a 97%-quantile is a good compromise between robustness

to outliers and responsiveness to tracking errors. Please

Table I. Averaged surface tracking errors in millimeters for each
sequence of the evaluation dataset that were tracked by Baak et
al., and our tracker.

M1 D1 D2 D3 D4 ∅

Baak et al. 66 84 139 138 106
Ours 61 81 116 102 90

M2 D1 D2 D3 D4 ∅

Baak et al. 54 84 71 153 91
Ours 56 77 75 110 80

M3 D1 D2 D3 D4 ∅

Baak et al. 59 88 104 108 90
Ours 56 76 89 93 79

F1 D1 D2 D3 D4 ∅

Baak et al. 74 102 172 129 119
Ours 64 84 115 97 90

F2 D1 D2 D3 D4 ∅

Baak et al. 49 66 82 117 79
Ours 46 62 80 105 73

note that since the Kinect SDK does not provide a tracked

mesh, we cannot calculate this error for the tracker of the

Kinect SDK.

Fig. 7 (top) shows the surface tracking error over se-

quence F1D1. The red curve represents the error of the

tracker by Baak et al. [3] while the yellow curve is

the result of our personalized tracker. The black vertical

line at 22.7 seconds indicates a point in time where the

surface tracking error of Baak et al. is significantly higher

than that of our tracker. Fig. 7 (b)–(f) shows that this

corresponds to a notable tracking error. In the middle,

Fig. 7 (b) displays the depth image recorded by the Kinect.

In the distance map, cyan colors depict small distances

around 0 millimeters while magenta colors represent high

distance values of 25 millimeters and up. On the right,

Fig. 7 (c)& (d) shows the distance map (left) and the

tracked mesh of their tracker, Fig. 7 (e)& (f) depicts the

distance map and the tracked mesh of our tracker. Our

tracker tracks the right arm of actor F1 correctly while it

was merged with the upper body by the tracker of Baak

et al..

Table I lists the average surface tracking errors of

the different sequences, actors and trackers. Our tracker

performs significantly better than the tracker of Baak et

al. [3]. Especially sequence M2D4—which is one of the

hardest sequences—is tracked considerably better by our

tracker (average error of 110mm) than by the tracker

by Baak et al. (average error of 153mm) Of course our

tracker also has limitations, e. g., when the actor does not

face the camera (as in sequences of difficulty D4) or when

parts of the body are occluded or outside of the recording

volume of the Kinect—which occasionally happens during

all sequences.

D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4

M1 F1 M3 F2 M2

0

50

100

150

200

250

E
rr
o
r
[m

m
]

Figure 6. Average joint tracking error in millimeters for each sequence from the evaluation dataset that were tracked by the tracker of
the Kinect SDK (black), Baak et al. (red), and our tracker (yellow).

5 10 15 20 25 3022.7
0

50

100

150

200

250

Time [s]

E
rr
o
r
[m

m
]

(a)

(b) (c) (d) (e) (f)

Figure 7. (a): Surface tracking error in millimeters for sequence
F1D1 tracked by of Baak et al. (red) and our tracker (yellow).
(b)-(f): Status at 22.7 seconds. (b): Depth image at (red front,
blue back). (c): Distance map of tracker of Baak et al.. (d):
Tracked mesh for tracker of Baak et al.. (e): Distance map for
our tracker. (f): Tracked mesh for our tracker.

V.. Conclusion and Future Work

In this paper, we presented a personalized real-time

tracker of human body poses from single depth images

that is more accurate than related approaches from the

literature. Key to its success is personalization. We devel-

oped a new approach to estimate the personalized shape

of an actor based on a parametric body model, which is

much faster and more accurate than previous methods. We

also presented a new real-time pose tracker that exploits

this model and automatically adjusts to every actor. In

conjunction, these two contributions allow us to track both

skeletal joint locations as well as the shape of the body

more accurately than with previous methods. We confirm

this through extensive evaluations against ground truth on

a comprehensive test dataset which is publicly available.

References

[1] A. Kolb, E. Barth, R. Koch, and R. Larsen, “Time-of-flight
sensors in computer graphics,” CGF, vol. 29, no. 1, pp.
141–159, 2010.

[2] A. Weiss, D. Hirshberg, and M. Black, “Home 3D body
scans from noisy image and range data,” in ICCV, Nov.
2011.

[3] A. Baak, M. Müller, G. Bharaj, H.-P. Seidel, and
C. Theobalt, “A data-driven approach for real-time full

body pose reconstruction from a depth camera,” in ICCV,
Nov. 2011.

[4] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,
and J. Davis, “Scape: shape completion and animation of
people,” ACM TOG, vol. 24, no. 3, pp. 408–416, Jul. 2005.

[5] N. Hasler, C. Stoll, M. Sunkel, B. Rosenhahn, and H.-P.
Seidel, “A statistical model of human pose and body
shape,” CGF, vol. 28, no. 2, 2009.

[6] P. Guan, A. Weiss, A. Bălan, and M. J. Black, “Estimating
human shape and pose from a single image,” in ICCV,
2009, pp. 1381–1388.

[7] N. Hasler, C. Stoll, B. Rosenhahn, T. Thormhlen, and
H.-P. Seidel, “Estimating body shape of dressed humans,”
Computers & Graphics, vol. 33, no. 3, pp. 211–216, 2009.

[8] R. Poppe, “A survey on vision-based human action
recognition,” Image and Vision Computing, vol. 28, no. 6,
pp. 976–990, 2010.

[9] A. Bleiweiss, E. Kutliroff, and G. Eilat, “Markerless
motion capture using a single depth sensor,” in SIGGRAPH
ASIA Sketches, 2009.

[10] S. Knoop, S. Vacek, and R. Dillmann, “Fusion of 2D and
3D sensor data for articulated body tracking,” Robotics
and Autonomous Systems, vol. 57, no. 3, pp. 321–329, 2009.

[11] Y. Zhu, B. Dariush, and K. Fujimura, “Kinematic self
retargeting: A framework for human pose estimation,”
CVIU, vol. 114, no. 12, pp. 1362–1375, 2010.

[12] V. Ganapathi, C. Plagemann, S. Thrun, and D. Koller,
“Real time motion capture using a single time-of-flight
camera,” in CVPR, 2010.

[13] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human
pose recognition in parts from a single depth image,” in
CVPR, Jun. 2011.

[14] X. Wei, P. Zhang, and J. Chai, “Accurate realtime full-body
motion capture using a single depth camera,” ACM TOG,
vol. 31, no. 6, Nov. 2012.

[15] J. Taylor, J. Shotton, T. Sharp, and A. W. Fitzgibbon, “The
Vitruvian manifold: Inferring dense correspondences for
one-shot human pose estimation,” in CVPR, 2012.

[16] A. Jain, T. Thormählen, H.-P. Seidel, and C. Theobalt,
“Moviereshape: Tracking and reshaping of humans in
videos,” ACM TOG, vol. 29, no. 5, 2010.

[17] C. Stoll, N. Hasler, J. Gall, H.-P. Seidel, and C. Theobalt,
“Fast articulated motion tracking using a sums of gaussians
body model,” in ICCV, 2011.

[18] Y. Chen and G. Medioni, “Object modelling by registration
of multiple range images,” Image and Vision Computing,
vol. 10, pp. 145–155, Apr. 1992.

[19] T. Helten, A. Baak, G. Bharaj, M. Müller, H.-P. Sei-
del, C. Theobalt, “Personalized Depth Tracker Dataset”,
http://resources.mpi-inf.mpg.de/PersonalizedDepthTracker/

http://resources.mpi-inf.mpg.de/PersonalizedDepthTracker/

