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Abstract

In recent years, the availability of inexpensive depth

cameras, such as the Microsoft Kinect, has boosted the re-

search in monocular full body skeletal pose tracking. Un-

fortunately, existing trackers often fail to capture poses

where a single camera provides insufficient data, such as

non-frontal poses, and all other poses with body part oc-

clusions. In this paper, we present a novel sensor fusion ap-

proach for real-time full body tracking that succeeds in such

difficult situations. It takes inspiration from previous track-

ing solutions, and combines a generative tracker and a dis-

criminative tracker retrieving closest poses in a database.

In contrast to previous work, both trackers employ data

from a low number of inexpensive body-worn inertial sen-

sors. These sensors provide reliable and complementary

information when the monocular depth information alone

is not sufficient. We also contribute by new algorithmic so-

lutions to best fuse depth and inertial data in both trackers.

One is a new visibility model to determine global body pose,

occlusions and usable depth correspondences and to decide

what data modality to use for discriminative tracking. We

also contribute with a new inertial-based pose retrieval, and

an adapted late fusion step to calculate the final body pose.

1. Introduction

In recent years, the advent of new and inexpensive cam-

eras that measure 2.5D depth images has triggered exten-

sive research in monocular human pose tracking. Most

of the trackers introduced so far can be classified into

three families—discriminative approaches and generative

approaches, and approaches combining both strategies.

While discriminative trackers detect cues in the depth im-

age and derive a pose hypothesis from them using a retrieval

strategy, generative trackers optimize for the parameters of

a human model to best explain the observed depth image.

Combining discriminative and generative approaches, hy-
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brid trackers have shown good results for fast motions in

real-time scenarios where tracked actors face the camera

more or less frontally. However, noise in the depth data,

and the ambiguous representation of human poses in depth

images are still a challenge and often lead to trackig errors,

even if all body parts are actually exposed to the camera.

In addition, if large parts of the body are occluded from

view, tracking of the full pose is not possible. Using mul-

tiple depth cameras can partially remedy the problem [19],

but does not eradicate occlusion problems, and is not always

practical in home user scenarios. Depth data alone may thus

not be sufficient to capture poses accurately in such chal-

lenging scenarios. In this paper, we show that fusing a depth

tracker with an additional sensor modality, which provides

information complementary to the 2.5D depth video, can

overcome these limitations. In particular, we use the orien-

tation data obtained from a sparse set of inexpensive inertial

measurement devices fixed to the arms, legs, the trunk and

the head of the tracked person. We include this additional

information as stabilizing evidence in a hybrid tracker that

combines generative and discriminative pose computation.

Our approach enables us to track fast and dynamic motions,

including non-frontal poses and poses with significant self-

occlusions, accurately and in real-time.

Contributions. Our method is the first to adaptively fuse

inertial and depth information in a combined generative and

discriminative monocular pose estimation framework. To

enable this, we contribute with a novel visibility model for

determining which parts of the body are visible to the depth

camera. This model tells what data modality is reliable

and can be used to infer the pose, and enables us to more

robustly infer global body orientation even in challenging

poses, see Sect. 4. Our second contribution is a genera-

tive tracker that fuses optical and inertial cues depending

on body part visibility, and finds pose parameters via opti-

mization, see Sect. 5. As a third contribution, we introduce

two separate retrieval schemes for handling optical and iner-

tial cues for retrieving database poses during discriminative

tracking, see Sect. 6. The final pose is found in a late fu-

sion step which uses the results of both trackers mentioned
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Figure 1. Three typical failure cases of a current real-time tracker combining generative and discriminative pose estimation [1] (left: input

depth image; middle: recovered pose of body model with catastrophic pose errors; right: significantly better result using our approach):

(a) Occluded body parts, (b) non-frontal poses, (b) and both at the same time.

above, see Sect. 7. We evaluate our proposed tracker on an

extensive dataset including calibrated depth images, inertial

sensor data, as well as ground-truth data obtained with a

traditional marker-based mocap system, see Sect. 8. This

dataset is publicly available1. We also show qualitatively

and quantitatively that it accurately captures poses even un-

der stark occlusion where other trackers fail.

2. Related Work

Marker-less pose estimation from multi-view video has

been a long-standing problem in computer vision, and

nowadays mature solutions exist, see [11] for an overview.

Recently, so-called depth cameras that measure 2.5D geom-

etry information in real-time have emerged [6, 21]. Many

monocular tracking algorithms use this depth data for hu-

man pose estimation. They can be classified in discrim-

inative approaches, generative approaches and hybrid ap-

proaches, reviewed in the following. A discriminative strat-

egy based on body part detectors that also estimated body

part orientations on depth images was presented in [9].

Body part detectors and a mapping to a kinematic skele-

ton are used in [22] to track full-body poses at interac-

tive frame rates. The approach [13] uses regression forests

based on depth features to estimate the joint positions of

the tracked person without the need for a kinematic model

of its skeleton. Later [4], further increased the accuracy,

by being able to also detect some occluded joints in non-

frontal poses. Finally, also using depth features and regres-

sion forests, [16] generate correspondences between body

parts and a pose and size parametrized human model that

is optimized in real-time using a one-shot optimization ap-

proach. While showing good results on single frame basis,

these approaches cannot deduce true poses of body parts

that are invisible in the camera.

By using kinematic body models with simple shape

primitives, the pose of an actor can be found using a gener-

ative strategy. The body model is fitted to depth data or to a

combination of depth and image features [5, 8]. [2] propose

1http://resources.mpi-inf.mpg.de/InertialDepthTracker

a generative depth-based tracker using a modified energy

function that incorporates empty space information, as well

as inter-penetration constraints. An approach that uses mul-

tiple depth cameras for pose estimation which reduces the

occlusion problem is presented in [19]. The approach is not

real-time capable, though. With all these depth-based meth-

ods, real-time pose estimation is still a challenge, tracking

may drift, and with exception to [19] the employed shape

models are rather coarse which impairs pose estimation ac-

curacy.

Salzmann et al. [12] combine generative and discrimi-

native approaches, with the goal to reconstruct general 3D

deformable surfaces. Soon after that, [3] showed a hybrid

approach specialized to reconstruct human 3D pose from

depth image using the body part detectors proposed by [9]

as regularizing component. Further accuracy improvements

were achieved by [1, 20] using regularizing poses from a

pre-recorded database as input to the generative tracker.

Here, [1] was the first approach running at real-time frame-

rates of more than 50 fps, whereas Ye et al.’s method [20] is

an offline approach. Other real-time algorithms were pro-

posed by e.g. [17] that use a body-part detector similar to

[13] to augment a generative tracker. However, none of

these hybrid approaches is able to give a meaningful pose

hypothesis for non-visible body parts in case of occlusions.

Methods that reconstruct motions based on inertial sen-

sors only have been proposed e.g. in [7, 15]. Here, either

densely placed sensors or large databases containing mo-

tions are used. Also, reconstructing the global position is

not possible.

Only a few vision algorithms so far use fusion with com-

plementary sensor systems for full-body tracking. One ap-

proach combining 3D inertial information and multi-view

markerless motion capture was presented in [10]. Here, the

orientation data of five inertial sensors was used as addi-

tional energy term to stabilize the local pose optimization.

Another example is [23] who fuse information from densely

placed inertial sensors is fused with global position estima-

tion using a laser range scanner equipped robot accompany-



ing the tracked person.

3. Hybrid Inertial Tracker - An Overview

Recent hybrid (generative + discriminative) monocular

tracking algorithms e.g. [1, 17] can track human skeletons in

real-time from a single depth camera, as long as the body is

mostly front-facing. However, even in frontal poses, track-

ing may fail due to complex self-occlusions, limbs close

to the body, and other ambiguities. It certainly fails if

large sections of the body are completely invisible to the

camera, such as in lateral postures, see Fig. 1c. Our new

hybrid depth-based tracker succeeds in such cases by in-

corporating additional inertial sensor data for tracking sta-

bilization. While our concepts are in general applicable

to a wide range of generative approaches, discriminative

approaches and hybrid approaches, we modify the hybrid

depth-based tracker by Baak et al. [1] to demonstrate our

concepts. This tracker uses discriminative features detected

in the depth data, so-called geodesic extrema EI, to query

a database containing pre-recorded full body poses. These

poses are then used to initialize a generative tracker that op-

timizes skeletal pose parameters X of a mesh-based human

body model MX ⊆ R
3 to best explain the 3D point cloud

MI ⊆ R
3 of the observed depth image I. In a late fusion

step, the tracker decides between two pose hypotheses: one

obtained using the database pose as initialization or one ob-

tained that used the previously tracked poses as initializa-

tion. Baak et al.’s approach makes two assumptions: The

person to be tracked is facing the depth camera and all body

parts are visible to the depth camera, which means it fails in

difficult poses mentioned earlier (see Fig. 1 for some exam-

ples).

In our new hybrid approach, we overcome these limita-

tions by modifying every step in the original algorithm to

benefit from depth and inertial data together. In particular,

we introduce a visibility model to decide what data modal-

ity is best used in each pose estimation step, and develop

a discrimative tracker combining both data. We also em-

power generative tracking to use both data for reliable pose

inference, and develop a new late fusion step using both

modalities.

Body Model Similar to [1], we use a body model com-

prising a surface meshMX of 6 449 vertices, whose defor-

mation is controlled by an embedded kinematic skeleton of

62 joints and 42 degrees of freedom via surface skinning.

Currently, the model is manually adapted to the actor, but

automatic shape adaptation is feasible, see e.g. [18]. Fur-

thermore, let Ball := {larm, rarm, lleg, rleg, body} be a set

of body parts representing the left and right arm, left and

right leg and the rest of the body. Now, we define five dis-

joint subsetsMb
X
, b ∈ Ball containing all vertices fromMX

belonging to body part b.
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Figure 2. Relationship between the different IMU coordinate sys-

tems and orientations.

Sensors As depth camera we use a Microsoft Kinect run-

ning at 30 fps, but in Sect. 8 we also show that our approach

works on time-of-flight camera data. As additional sensors,

we use inertial measurement units (IMUs) which are able to

determine their relative orientation with respect to a global

coordinate system, irrespective of visibility from a cam-

era. IMUs are nowadays manufactured cheaply and com-

pactly, and integrated into many hand-held devices, such as

smart phones and game consoles. In this paper, we use six

Xsens MTx IMUs, attached to the trunk (sroot), the forearms

(slarm, srarm), the lower legs (slleg, srleg), and the head (shead),

see Fig. 4a. The sensor sroot gives us information about the

global body orientation, while the sensors on arms and feet

give cues about the configuration of the extremities. Finally,

the head sensor is important to resolve some of the ambigu-

ities in sparse inertial features. For instance, it helps us to

discriminate upright from crouched full body poses. The

sensors’ orientations are described as the transformations

from the sensors’ local coordinate systems to a global co-

ordinate system and are denoted by qroot, qlarm, qrarm, qlleg,

qrleg, and qhead. In our implementation, we use unit quater-

nions for representing these transformations, as they best

suit our processing steps.

For ease of explanation, we introduce the concept of a

virtual sensor which provides a simulated orientation read-

ing of an IMU for a given pose X of our kinematic skele-

ton. Furthermore, the transformation between the virtual

sensor’s coordinate system and the depth camera’s global

coordinate system can be calculated. For clarity, we add X

or S to the index, e.g. qS,root denotes the measured orien-

tation of the real sensor attached to the trunk, while qX,root
represents the readings of the virtual sensor for a given pose

X. Note, while the exact placement of the sensors relative

to the bones is not so important, it needs to be roughly the

same for corresponding real and virtual sensors. Further

calibration of the sensors is not required. An orientation of

a sensor at time t is denoted as qroot(t).

4. Visibility Model

Our visibility model enables us to reliably detect global

body pose and the visibility of body parts in the depth cam-



era. This information is then used to establish reliable corre-

spondences between the depth image and body model dur-

ing generative tracking, even under occlusion. Furthermore,

it enables us to decide whether inertial or optical data are

more reliable for pose retrieval.

Global body position and orientation. In [1], the au-

thors use plane fitting to a heuristically chosen subset of

depth data to compute body orientation and translation of

the depth centroid. Their approach fails if the person is not

roughly facing the camera or body parts are occluding the

torso. Inertial sensors are able to measure their orientation

in space independent of occlusions and lack of data in the

depth channel. We thus use the orientation of the sensor

sroot to get a good estimate of the body’s front direction f

within the camera’s global coordinate system, even in dif-

ficult non-frontal poses, Fig. 3b. However, inertial sensors

measure their orientation with respect to some global sen-

sor coordinate system that in general is not identical to the

camera’s global coordinate system, see also Fig. 2. For that

reason, we calculate the transformation qX,root(t) in a sim-

ilar fashion as described in [10] using relative transforma-

tions ∆q(t) := qS,root(t0) ◦ qS,root(t) with respect to an initial

orientation at time t0. Here, q denotes the inverse trans-

formation of q, while q2 ◦ q1 expresses that transformation

q2 is executed after transformation q1. The transformations

qS,root(t0) and qS,root(t) can be directly obtained from the

sensor’s measurement. The desired transformation from the

sensor’s coordinate system to the camera’s global coordi-

nate system at time t is now qX,root(t) = qX,root(t0) ◦ ∆q(t).

Note that qX,root(t0) can not be measured. Instead, we calcu-

late it using virtual sensors and an initial pose X(t0) at time

t0. For this first frame, we determine the front direction

f (t0) as described in [1] and then use our tracker to com-

pute X(t0). In all other frames, the front facing direction is

defined as

f (t) := qX,root(t) ◦ qX,root(t0)[ f (t0)]. (1)

Here, q[v] means that the transformation q is applied to the

vector v, Fig. 3b.

Body part visibility. The second important information

supplied by our visibility model is which parts of the model

are visible to the depth camera. To infer body part visibility,

we compute all vertices CX ⊆ MX of the body mesh that

the depth camera sees in pose X. To this end, we resort to

rendering of the model and fast OpenGL visibility testing.

Now, the visibility of a body part b is defined as

Vb :=
|Mb
X
∩ CX|

|Mb
X
|
. (2)

(a)

0◦

(b)

45◦

(c)

90◦

(d)

45◦

Figure 3. Tracking of frame at 5.0 s of sequence D6 from our eval-

uation dataset. The views are rotated around the tracked person,

where offset w. r. t. the depth camera is depicted at the bottom of

each subfigure. (a) Input depth data. (b) Output of the visibility

model. Note: the right arm is not visible. (c) Correspondences

used by the generative tracker. Note: no correspondences with

right arm. The pose parametrized mesh was moved to the left for

better visibility. (d) Final fused pose.

The set of visible body parts is denoted as Bvis :=

{b ∈ Ball : Vb > τ3}. Note, that the accuracy of Bvis depends

onMX resembling the actual pose assumed by the person in

the depth image as closely as possible, which is not known

before pose estimation. For this reason, we choose the pose

X = XDB, obtained by the discriminative tracker which

yields better results than using the pose X(t − 1) from the

previous step, (see Sect. 6). To account for its possible devi-

ation from the “real” pose and to avoid false positives in the

setBvis, we introduce the threshold τ3 > 0. In the tested sce-

narios, values of τ3 up to 10% have shown a good trade-off

between rejecting false positives and not rejecting to many

body parts, that are actually visible.

In the rendering process also a virtual depth image IX is

created, from which we calculate the first M = 50 geodesic

extrema in the same way as for the real depth image I, see

[1]. Finally, we denote the vertices that generated the ex-

trema’s depth points with CM
X
.

5. Generative Pose Estimation

Similar to [1], generative tracking optimizes skeletal

pose parameters by minimizing the distance between cor-

responding points on the model and in the depth data. Baak

et al. fix CX manually, and never update it during track-

ing. For every point in CX they find the closest point in

the depth point cloud MI, and minimize the sum of dis-

tances between model and data points by local optimization

in the joint angles. Obviously, this leads to wrong corre-

spondences if the person strikes a pose in which large parts

of the body are occluded.

In our approach, we also use a local optimization scheme

to find a pose X that best aligns the modelMX to the point

cloudMI. In contrast to prior work, it also considers which

parts of the body are visible and can actually contribute to

explaining a good alignment into the depth image. Further-
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Figure 4. (a) Placement of the sensors on the body and normalized

orientation w. r. t. sroot. (b) Body part directions used as inertial

features for indexing the database. (c) Two poses that cannot be

distinguished using inertial features. (d) The same two poses look

different when using optical features.

more, we define subsets Xb, b ∈ Ball of all pose parameters

in X that affect the corresponding point sets Mb
X
. We de-

fine the set of active pose parameters Xact :=
⋃

b∈Bvis
Xb.

Finally, the energy function is given as

d(MX,MI) := dMX→MI + dMI→MX (3)

dMX→MI :=
1

M

∑

v∈CM
X

min
p∈MI

‖p − v‖2 (4)

dMI→MX :=
1

N

∑

e∈EN
I

min
v∈MX

‖e − v‖2. (5)

Here, EN
I
represents the first N = 50 geodesic extrema in

I, while CM
X

is a subset of CX containing M = 50 visible

vertices, see Sect. 4 for details. A visualization for the re-

sulting correspondences can be seen in Fig. 3c. As opposed

to Baak et al., we minimize d(MX,MI) using a gradient

descent solver similar to the one used in [14] and employ

analytic derivatives.

6. Discriminative Pose Estimation

In hybrid tracking, discriminative tracking complements

generative tracking by continuous re-initialization of the

pose optimization when generative tracking converges to an

erroneous pose optimum (see also Sect. 7). We present a

new discriminative pose estimation approach that retrieves

poses from a database with 50 000 poses obtained from mo-

tion sequences recorded using a marker-based mocap sys-

tem. It adaptively relies on optical features for pose look-up,

and new inertial features, depending on visibility and thus

reliability of each sensor type. In combination, this enables

tracking of poses with strong occlusions, and it stabilizes

pose estimation in front-facing poses.

Optical database lookup. In order to retrieve a pose XDB
I

matching the one in the depth image from the database,

Baak et al. [1] use geodesic extrema computed on the depth

map as index. In their original work, they expect that the

first five geodesic extrema E5
I
from the depth image I are

roughly co-located with the positions of the body extrema

(head, hands and feet). Geodesic extrema also need to be

correctly labeled. Further on, the poses in their database

are normalized w. r. t. to global body orientation which re-

duces the database size. As a consequence, also queries

into the database need to be pose normalized. We use Baak

et al.’s geodesic extrema for optical lookup, but use our

more robust way for estimating f (t) for normalization, see

Sect. 4. Our method thus fares better even in poses where

all geodesic extrema are found, but the pose is lateral to the

camera.

Inertial database lookup. In poses where not all body

extrema are visible, or where they are too close to the

torso, the geodesic extrema become unreliable for database

lookup. In such cases, we revert to IMU data, in partic-

ual their orientations relative to the coordinate system of the

sensor sroot, see Fig. 4a. Similar to the optical features based

on geodesic extrema, these normalized orientations q̂b(t) :=

qroot(t) ◦ qb(t), b ∈ B = {larm, rarm, lleg, rleg, head} are in-

variant to the tracked person’s global orientation but capture

the relative orientation of various parts of the person’s body.

However, using these normalized orientations directly as in-

dex has one disadvantage. This is because many orienta-

tion representations need special similarity metrics that are

often incompatible to fast indexing structures, such as kd-

trees. To this end, we use a vector d̂b ∈ R
3 that points in

the direction of the bone of a body part, see Fig. 4b. In our

setup, these directions are co-aligned with the sensors’ lo-

cal X-axis for all sensors except for the sensor shead, where

it is co-aligned with the local Y-axis. The normalized direc-

tions d̂b(t) := q̂b(t)[db] are then stacked to serve as inertial

feature-based query to the database. The retrieved pose is

denoted as XDB
S

.

Selecting optical or inertial lookup. At first sight, it may

seem that inertial features alone are sufficient to look up

poses from the database, because they are independent from

visibility issues. However, with our sparse set of six IMUs,

the inertial data alone are often not discriminative enough to

exactly characterize body poses. Some very different poses

may induce the same inertial readings, and are thus ambigu-

ous, see also Fig. 4c. Of course, adding more IMUs to the

body would remedy the problem but would starkly impair

usablity and is not necessary as we show in the following.

Optical geodesic extrema features are very accurate and dis-

criminative of a pose, given that they are reliably found,

which is not the case for all extrema in difficult non-frontal

starkly occluded poses, see Fig. 4d. Therefore, we intro-

duce two reliability measures to assess the reliability of op-

tical features for retrieval, and use the inertial features only

as fall-back modality for retrieval in case optical feautures



cannot be trusted. We use the distances ǫi(t) of the geodesic

extrema i ∈ {1, . . . , 5} at frame t w. r. t. the centroid of the

point cloud which roughly lies as the center of the torso. For

each end effector that distance does not change dramatically

across poses in normal motion. When a geodesic extremum

is not detected correctly, the computed distance ǫi(t) there-

fore typically differs significantly from ǫ i. In practice, the

distances can be obtained after the first pass of the modified

Dijkstra’s algorithm, presented in [1]. This yields our first

reliability measure

ǫ(t) :=

5
∑

i=1

|ǫi(t) − ǫ i|, (6)

The values of ǫ i for a specific actor are computed once from

a short sequence of depth images in which geodesic extrema

were detected reliably.

A second reliability measure is the difference between

the purely optical computation of the global body pose sim-

ilar to Baak et al. and the inertial sensors measured orienta-

tions. More precisely, we use the measure

∆(t) :=
∑

b∈B

δ(q̂XDB
I
,b(t), q̂S,b(t)). (7)

δ = cos−1 |〈·, ·〉| measures the difference between rotations

that we represent as quaternions, where 〈·, ·〉 is the dot prod-

uct treating quaternions as 4D vectors. The final retrieved

pose is computed as

XDB :=

{

XDB
I
, if ǫ(t) < τ1 ∧ ∆(t) < τ2

XDB
S
, otherwise

. (8)

We found experimentally that τ1 = 1.15 and τ2 = 4.0 are

good values for all motion sequences we tested.

7. Final Pose Estimation

The final pose computed by our algorithm is found in a

late fusion step. We are running two local pose optimiza-

tions (Sect. 5), one using the database pose XDB as initial-

ization for the optimizer, and one using the pose from the

last frame Xlast as initialization. Here, we are only optimiz-

ing for those parameters that are part of Xact. The resulting

optimized poses are called XDB
opt and X

last
opt . From those two,

we select the best pose according to Eq. (3). Those param-

eters that are not part of Xact are taken over from X
DB
S

. This

way, even if body parts were occluded or unreliably cap-

tured by the camera, we obtain a final result that is based

on actual sensor measurements, and not only hypothesized

from some form of prior.

8. Results

The C++ implementation of our tracker runs at around

30 fps on a PC with a 2.4 GHz Intel Core i7-2760 QMCPU.
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Figure 5. Evaluation on the Stanford dataset presented in [3]. (red)

Ganapathi et al. [3] (blue) Baak et al. [1] (yellow) Our tracker.

(cyan) Ye et al. [20] (not real-time). (green) Taylor et al. [16].

We qualitatively and quantitatively evaluate it and its com-

ponents on several data sets and compare to related methods

from the literature.

We use a pose database with 50 000 poses. 44 000 were

kindly provided by Baak et al. [1]. We include 6 000 addi-

tional poses that we recorded along with the evaluation data

set (Sect. 8.2). These poses show similar types of motion,

but are not part of the evaluation set. The pose database is

recomputed for each actor once to match his skeleton di-

mension.

8.1. Evaluation on Stanford Dataset

We evaluate our tracker on the 28 sequences of the Stan-

ford data set from [3]. This data set was recorded with a

Swissranger SR 4000 time-of-flight camera and provides

ground-truth marker positions from a Vicon motion capture

system. However, the data neither contain a pose param-

eterized model of the recorded person nor inertial sensor

data. We therefore estimated the size of the recorded per-

son using a deformable shape model from a set of isulated

depth frames obtained from the dataset, see [18] for details.

Using the mesh of the fitted model, we designed a suitable

skeleton with the same topology as required by our pose pa-

rameterized model. We tracked the whole dataset using an

IK-tracker and the provided ground-truth marker positions

as constraints. The obtained pose parameters were used to

compute virtual sensor readings. Note, that there are a lot

of manual preprocessing steps involved to make our tracker

run on this data set, and each step introduces errors that are

not part of the evaluation of the other tested trackers (we

copied over their error bars from the respective papers). We

now, tracked the dataset using the provided depth frames

as well as the virtual sensor readings with our tracker and

computed the error metric as described in [3], Fig. 5.

Discussion We used the mean errors according to the er-

ror metric described by [3] to compare our tracker to the

ones of Ganapathi et al. [3], Baak et al. [1], Ye et al. [20]

which is not a real-time tracker, and Taylor et al. [16]. Here,

we averaged the results of the sequences 0–23 that contain

relatively easy to track motions and where our tracker is



performing comparable to previous approaches with little

difference across sequences (see additional material for full

table). By mean error, our tracker performs better than [3]

and [1] on most sequences, and is close to the others on all

data (see comments at end). However, our tracker shows its

true advantage on sequences with more challenging motion,

24–27, of which only 24 shows notable non-frontal poses,

and periods where parts of the body are completely invisi-

ble. Here, one can see that other trackers fail, as the errors

of most trackers roughly double with respect to the mean

error on other sequences. In contrast, our tracker shows an

increase of only about 15%, as it continues to follow the

motion throughout the sequence. Please note the mean er-

rors are not the best metric to asses our tracker, but are the

only values reported in all other papers. The absolute mean

errors of our tracker are likely biased by an overhead stem-

ming from the preprocessing mentioned above, and mask

its stark improvement on occluded poses.

8.2. Evaluation Dataset

For more reliable testing of our tracker’s performance,

we recorded a new dataset containing a substantial frac-

tion of challenging non-frontal poses and stark occlusions

of body parts. For recording we used one Microsoft Kinect,

six Xsens MTx IMUs, as well as a PhaseSpace marker-

based optical mocap system with 38 markers. The IMUs

were strapped to the head, lower legs, the trunk, and fore-

arms, and are co-align with the assumed virtual sensors,

see also Sect. 3. In the following, we assume that all data

is temporally aligned and the Kinect data and the marker-

based system are spatially aligned. We recorded 6 different

sequences (D1, . . . ,D6) with varying difficulties including

punching, kicking, rotating on the spot, sidewards and cir-

cular walking performed by one actor (See additional mate-

rial for details). This totals in about 6 000 frames at 30Hz.

For all sequences we computed ground truth pose parame-

ters and joint positions using the recorded marker positions

and the same kinematic skeleton that we use in our tracker.

For a qualitative evaluation of our tracker, also in compar-

ison to previous approaches, we refer to Fig. 1 and the ac-

companying video.

Discussion With this data, we quantitatively compare our

tracker (hDB) to the Kinect SDK as well as Baak et al.’s

work [1]. Note that the tracker of the Kinect SDK is imple-

menting the approach of Shotton et al. [13]. We also quan-

titatively evaluate our tracker with only optical retrieval

(oDB), and only inertial retrieval (iDB). To make results of

very different trackers comparable, we introduce a new er-

ror measure based on joints. Since all trackers use a slightly

different set of joints, we select for each tracker a subset

of 16 joints that are close to semantic positions in the body

such as the lower back, the middle of the back, the upper

back, the head, the shoulders, the elbows, the wrists, the

hips, the knees, and the ankles. Furthermore, as the corre-

sponding joints from the different trackers do not lie at the

exact same positions we need to normalize for this offset.

We do this by calculating the average local displacement

(i. e. local within the frame of the ground truth joint) of the

joint relative to the corresponding ground-truth joint, and

subtracting this offset from the position of the tracked joint.

Fig. 6a shows the average joint error for all tested track-

ers and algorithm variants on all 6 sequences. On the first

four sequences which are easier and show no non-frontal

poses, our final tracker (hDB) is among the best ones and,

as expected, mostly comparable to Ganapathi’s and Baak’s

methods. Importantly, it is always better than iDB and oDB.

However, hDB outperforms all other approaches on the last

two sequences, e.g. producing less than half the error (about

75mm) of Baak et al. [1] with about 180mm. The temporal

error evolution of some representative joints in D5 and D6

are depicted in Fig. 6b for Kinect SDK, Baak et al., and our

algorithm. This clearly shows that our algorithm produces

significantly lower errors than the other trackers on certain

spans of poses, which is masked in average error values.

Finally, Fig. 6c shows the superiority of our tracker on se-

lected time steps from that sequence, by visually compar-

ing each result to ground truth joint locations (see video for

more results). Error plots for the other joints and sequences

can be found in the supplemental material. Here, we also

included errors of our tracker, where one of the database-

lookup strategies—either the optical or the inertial—was

deactivated to show its impact on the overall performance.

Our final tracker also performs consistently better than iDB

and oDB illustrating the benefit of our fusion strategy. This

is particularly evident in D3 and D4. Sequence D3 contains

squats, on which inertial feature lookup is ambiguous. D4

contains motions where the arms touch the body at differ-

ent locations. Here, the database lookup based on optical

features fails.

9. Conclusions

We presented a hybrid method to track human full body

poses from a single depth camera and additional inertial

sensors. Our algorithm runs in real-time and, in contrast

to previous methods, captures the true body configuration

even in difficult non-frontal poses and poses with partial

and substantial visual occlusions. The core of the algo-

rithm are new solutions for depth and inertial data fusion

in a combined generative and discriminative tracker. We

have demonstrated our tracker’s performance qualitatively

and quantitatively on a large corpus of data that we pro-

vide to the community, and showed its clear advantages over

other state-of-the-art methods.
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Figure 6. (a) Average joint tracking error in millimeters for sequences D1, . . . ,D6 from our evaluation dataset, tracked with Kinect SDK’s

joint tracker (black), Baak et al. (blue), and our tracker with only optical DB lookup (oDB) (light blue), only inertial DB lookup (iDB)

(orange), and the proposed combined DB lookup (hDB) (yellow). (b) Joint errors for selected joints over sequences D5 and D6 (time in

seconds). Per joint there are three error rows: (top) Kinect SDK’s tracker, (middle) Baak et al., and (bottom) our approach. (c) Three

challenging example poses from sequences D5 and D6. Input depth data, ground-truth joint positions (green dots) and tracked (skeleton)

shown from the side. Our approach (right) clearly outperforms the Kinect SDK’s tracker (left), and Baak et al.’s method (middle).
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